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A nonlinear system of differential equations of heat and mass transfer is examined under steady-state con-
dirions. Exact analytical solutions are found to five boundary problems for this system.

Heat and mass transfer processes are governed by the system of nonlinear parabolic equations
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with appropriate initial and boundary conditions. Functions h and q take into.account the influence of heat and mass
sources and sinks.

The system (1) combines two parabolic equations related to one another by the additional terms containing deriva-
tives with respect to time and the space coordinates. There is definite interest in the solution of (1) for the steady-state
case when the process does not depend on time and the partial derivatives with respect to time may be omitted.

The steady-state solution is also of interest because the influence of the dependence of the heat and mass transfer
characteristics on temperature t and mass transfer potential u is particularly noticeable not at the start of the process,
but later, when the process approaches the steady-state condition. In other words, the nonconstancy of the coefficients
of (1) will have its greatest effect from a certain time onwards.

We shall examine the following nonlinear one-dimensional steady-state problem with boundary conditions of the
first kind: ’
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x=0, t=1 =const; x=R, {=1,=const;
x=0, u=u; =const; x=R, u=u,==-const. (4

Equation (8) can be fully solved for quite a wide class of functions A(t) and various boundary conditions. After de-
termining the form of function t = t(x), we can represent the derivative §(t)dt/dx, in (2) as some known function fy(x).

When h = 0, Eq. (2) transforms to a nonlinear equation of the type
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where a'(u) and fi(x) denote differentiation with respect to u and x, respectively.

If in (2) h(u) = 0, we obtain instead of (5) the simpler nonlinear equation

a () dujdx + a (@) f; (x) = C, ®
where Cy is a constant.

Therefore the solution of (2) and ¢3), both for boundary conditions of the first kind and for other boundary condi-
tions, leads in practice to the solution of nonlinear equations (5) or (6).

If functions a(u), h({u), and fi{x) are such thata solutionto (5) or (6) can be obtained, the problem (2)-(4) has an
exact analytical solution.
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I. for example, let a@(u) = 1/u, h(w)= 0, r (¢) = & ({) = bf, where b = const." With account for the first two
boundary conditions, in this case (38) gives

£ = (2/b)(Cyx + Cy), (7N

where

C, = (b/2R)(Z— 1), Cy = (b/2) £2.

Substituting the values of the constants into (7), we finally obtain for function t the expression
P=(E—8B)xR+28. (8)
We shall determine the function on u = u(x).

After substitution of the expressions for a(u), 8(t) and dx/dt, Eq. (2) leads to an ordinary linear equation in u

du/dx — Csu -~ C; = 0.
The general solution of this equation is
—1
U= C3 [C]_ - Ci eXp (ng)] .
The constant C; is determined from the formula given above.

For determining the constants Cg and C,, after using the second two boundary conditions we obtain the following
set of equations:

C4 = Cl i Cgu‘p
C4 eXp (C3R) = C1 —_ C3u2.

These equations must satisfy the condition

Cy + 0.

The latter is the boundedness condition for u.
It is easily verified, moreover, that when G3= 0, Eq. (2) vanishes.

Constants Gy and Gy are determined graphically from the set of equations obtained. For example, if it is assumed
thaty = 3, up =1, b= R= 1 and C; = 4, the values of Cg and C4 from the formulas obtained are approximately: Cg=
= 0.92908, C,= 1.21276.

O. Now let g(u)==u, h(u)y=0, M) =0t 8(f) =&y, whereb and §, are constants.

We use the previous expression (8) for function t, and for u we obtain the nonlinear equation

udu/dx 4 ku —C3 = 0, 9
where the constant p — _§0_ (2 —£).
. oR 2 1
The general solution of (9) is
u C
'_‘"“"!—M 3A11‘1(ku—C3) =C4 — X. (10)
k k2
Using the last two boundary conditions, we obtain equations for C3 and Cy4
Cs In(k = kC
Uy + k Il( Uy — 3) — 4s (11)
Cy
U + L In(kuy — C3) = k(Cy — R). (12)

It is clear from the solution of (10) that the constant Gz must satisfy the conditions

kU1‘—C3> 0, kug""‘CB\ > O-
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Eliminating C4 from (11) and (12), we obtain for Cg the equation
exp {RIER —(uy— us)l/Cs} = (kuy — C3)/(kus — Cy), (13)
which is solved graphically.
Having determined Cg from (13), we find C4 either from (11) or from (12).
As an example, the set of equations (1), (12) has been solved for conditions uy = 3, up =1, k=1, R= 1,
The following approximate values were found:

Cs = — 1.91328 and C; = — 0.04549.

III. We shall examine the problem when Eq. (2) contains a source depending on u.

Let :
Aty =exp(t), 3(f u)=exp(t)u, a(u)=u, h() =— 1/2u

Solving (3) with the first two boundary conditions, we obtain for the function t

exp(f) = Cix + Cy;

1 14
Ci=—lexp(®)—exp(t)), Co=exp(h). a9
We shall find u = u(x).
The nonlinear equation (2) becomes
d*u du \2 1
U = 0. N
dx? +(dx )+2u (147
Equation (14'), as is known, may be written in the form
2
uz( du ) +'u:C3-
dx
The general integral of this equation is
3 9
4C3— 3C3ut —ud = Z—(x 4+ Cy)2. as)

Using (15) and the last two boundary conditions, we find

4C3— BCyd — il = % e

4C3 — 3Cqu5 — 1l = li— (R + C,).

From these equations the constants Cy and Gy are evaluated.

V. Let () =exp(f), a(u)=exp(—ku), O5( u)=>\(f)exp (ku), h(u)=Dbuexp(—ku), k>0,
b; > 0; then Eq. (2) takes the form '

d*u ___k(du

2
. _— ——— blu = 0-
dx?

dx (16)

Equation (16) occurs in the theory of nonlinear oscillations. By substituting p(u) = (du/ dx)? we can transform it
a linear equation in p:

9D opp—9bu=0.
du .
From this we find
p = Czexp(2ku)— (by/2k?) (2ku + 1). (1n

to
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Denoting the right side of (17), for brevity, by &*u), and performing certain calculations, we obtain a relation
for the function u = u(x)

§{ du/® (u) = x + C,. (18)

Formula (18) is the general integral of (16). After integration, constants Cz and Cy are determined using the last
two boundary conditions. The solution of (3) in case IV for t = 1(x) is given as before by (14). Thus, in case IV the solu-
tion of the nonlinear problem (2)-(4) is determined by (18) and (14). If we take another type of source, namely, put

h(u) = — b exp(-— ku), then instead of (16) we obtain the simpler equation
d*u du \*
—k|{— by =0,
dx? ( dx ) th (19)

whose general integral has the form

expl2ka; (x 4+ Co)l = (M — a3)/(M — a;), (20)
where

M? (1) = Cyexp(2ku) + a2, a?= by/k> 0.
Using the last two boundary conditions to evaluate C3 and C,, we obtain equations which are solved graphically:

exp [2km,Cy] = (My — a)/(M, + ), 1)
exp [2ka; (R + C)] = (M — ap)/(M; + ay), (22)
where

M, = M(uy), My= M (u,).

Let us take a special case. When k= 1/2=b;, we have d} = 1. Then (20)~(22) assume the simpler form:
exp (¥ + Cy) = (N — DAN - 1),
exp (Cy) = (N1 — DNy + 1),
exp(R+Cy) = (N, — 1)/(Ne + 1),

where

N2 (u)=Czexp(u)-+1, N;=N{(y), Ny=N(u).
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