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A nonlinear system of different ial  equations of heat  and mass transfer is examined under s teady-s ta te  con- 
ditions. Exact ana ly t ica l  solutions are found to five boundary problems for this system. 

Heat and mass transfer processes are governed by the system of nonlinear parabol ic  equations 

Ott 
- v l a v u + a ~ v t ] + h ( u ,  t), 

Or. l p Ou 
- - = - - V ( k V t ) + ~  + q ( u ,  t) 

O~ cy c O-c 

(1) 

with appropriate in i t ia l  and boundary conditions. Functions h and q take i n t o a c c o u n t  the influence of heat  and mass 
sources and sinks. 

The system (1) combines two parabol ic  equations related to one another by the addi t ional  terms containing der iva-  
tives with respect to t ime and the space coordinates,  There is definite interest in the solution of (1) for the s teady-s ta te  
case when the process does not depend on t ime and the par t ia l  derivatives with respect to t ime  may be omi t ted .  

The s teady-s ta te  solution is also of interest because the influence of the dependence of the hea t  and mass transfer 
characterist ics on temperature t and mass transfer potent ia l  u is par t icular ly  not iceable  not at the start  of the process, 
but later,  when the process approaches the s teady-s ta te  condit ion.  In other words, the nonconstancy of the coefficients 
of (1) wil l  have its greatest  effect  from a certain t ime  onwards. 

We shall  examine the foilowing nonlinear one-dimensional  s teady-s ta te  problem with boundary conditions of the 
first kind: 

d [a(u)~x +a(u)~(t) dr (2) 

d [ o(0 d@l o, (3) 
dx 

x = 0 ,  t= t~=cons t ;  x = R ,  t=to.=const ;  
(4) x = 0 ,  u = u l = c o n s t ;  x = R ,  u = u s = c o n s t .  

Equation (3) can be fully solved for quite a wide class of functions X(t) and various boundary conditions.  After de-  

termining the form of function t = t(x), we can represent the der ivat ive 6( t )d t /dx ,  in (2) as some known function f~(x). 

When h ~ 0, Eqo (2) transforms to a nonlinear equation of the type 

d~. ( d~ I s du , 
a ( . )  dx s + a'(u~ + a' (u) fdx)  + a(u) = ' ~X  ] -~X ~1 (X) h (/A), (5) 

where a'(u) and fi(x) denote differentiat ion with respect to u and x, respect ively .  

If in (2) h(u) = 0, we obtain instead of (5) the s impler  nonlinear equation 

a (u) d . /dx  + a (u) fl (x) = G ,  (6) 

where C s is a constant. 

Therefore the solution of (9) and (3), both for boundary conditions of the first kind and for other boundary condi-  

tions, leads in pract ice  to the solution of noniinear equations (5) or (6). 

If functions a(u), h(u), and ]l(x) are such that a solution to (5) or (6) can be obtained, the problem (2)-(4)  has an 

exact  ana ly t ica l  solution. 
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I. for example ,  le t  a (u) = l / u ,  h (u) = O, k (t) =- ?~ (l) = bt, where b = const. W i t h  account for the first two 

boundary conditions, in this case (3) gives 

where 

t 2 = ( 2 / b ) ( C l x  + C2), 

set of equations: 

(7) 

Ca - -  ( b /2R)  (t 2 - -  t2), C 2 . =  (b/2)t~. 

Substituting the values of the constants into (7), we f inal ly obtain for function t the expression 

t = - x / R  + tl ( s )  

We shall determine the function on u = u(x). 

After substitution of the expressions for a(u), 5(t) and d x / d t ,  Eq. (2) leads to an ordinary l inear  equation in u 

d u / d x  - -  C3u + C1 = O. 

The general  solution of this equation is 

u = C~ -1 [Cl - -  C~ e x p  (C3x)]. 

The constant C z is determined from the formula given above. 

For determining the constants C.~ and C4, after using the second two boundary conditions we obtain the following 

C~ = C1 - -  Csu i ,  

C4 e x p  (C3R) = C1 - -  C3/g2, 

These equations must satisfy the condition 

C3: / :  O. 

The la t ter  is the boundedness condit ion for u. 

I t  is easily verified, moreover,  that when C~ = 0, Eq. (2) vanishes. 

Constants C s and C4 are determined graphica l ly  from the set of equations obtained.  For example ,  if  i t  is assumed 

that u I = 3, u 2 = 1, b = R = 1 and C I = 4, the values of C_~ and C 4 from the formulas obtained are approximately:  C 3 = 

= 0.92908, Ca = 1.21276. 

II. N o w l e t  a ( u ) : = u ,  h ( u ) = 0 ,  ~ ( t ) = b t ,  g ( t ) : ; o t ,  where b and 60 are constants. 

We use the previous expression (8) for function t, and for u we obtain the nonlinear equation 

u d u / d x  + ku  - -  C3 = O, 

where the constant k - -  ~176 ( / ~ - - t ~ ) .  
2 R  

The general  solution of (9) is 

u C3 In ( k u  - -  C3) = Ca - -  x .  

using the last two boundary conditions, we obtain equations for C 3 and C4 

G 
ul -q- ~ In ( ku l  - -  C3) = kC4, 

h 

u ~ +  C~ l n ( k u 2 - - C a ) = k ( C ~ - - R ) .  
k 

(9) 

(lo) 

(11) 

(12) 

It is c lear  from the solution of (10) that the constant C 3 must satisfy the conditions 

kUl - -  C3 > O, ku~ - -  C~ > O. 
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Eliminating Ca from (11) and (12), we obtain for C a the equation 

e x p  {k [kR - -  (u~ - -  u~)l/Ca } = (kul - -  C~)/(ku: --  Ca), 

which is solved graphically. 

Having determined C a from (13), we find C4 either from (11) or from (12). 

As an example, the set of equations (1), (12) has been solved for conditions u 1 = 3, u 2 = 1, k = 1, 

The following approximate values were found: 

Ca = - -  1.91328 andCa = - -  0 .04549.  

III. We shall examine the problem when Eq. (2) contains a source depending on u. 

Let 

)~(t) = exp( t ) ,  ~(t, u) = exp( t ) /u ,  a (u )  --- u, h(u)  == - -  1/2u. 

R = I .  

(la) 

Solving (3) with the first two boundary conditions, we obtain for the function t 

e xp  (t) = C~x § C~; 

1 
C1 = ~ { e x p ( t 2 ) - - e x p ( h ) } ,  C~ = e x p ( h ) .  

We shall find u = u(x). 

The nonlinear equation (2) becomes 

d2u I du \ 2 1 
u &---V--~- I l d x  ] + 2-----u- ~-~- 0o 

(14) 

(14') 

Equation (14'), as is known, may be written in the form 

u2[ du ~ 2 
\ dx ] + u - - C 3 .  

The general integral of this equation is 

4C~ - -  3C3u ~ - -  u ~ = 9 ( x + C4) 2. 
4 (15) 

Using (15) and the last two boundary conditions, we find 

4Caa __ u 2 9 - . 1  = - -  d ,  
4 

3 2 
4Ca - -  3C3u2 - -  ua~ ---- - -  

From these equations the constants C 3 and C4 are evaluated. 

IV. Let k (t) ----- exp  (t), a (u) = exp ( -  ku), 
bl ~ 0 i  then Eq. (2) takes the form 

9 (R + C4) 2. 
4 

(t, u) ----- ), (t) exp  (ku), h (u) --- blu exp  (-- ku), k > O, 

k ( eu 
dx 2 \ dx ] (16) 

Equation (16) occurs in the theory of nonlinear oscillations. By substituting p(u) = (du/dx) ~ we can transform it to 

a linear equation in p: 

dp 2kp - -  2blu = O. 
du 

From this we find 

p = C3 exp (2ku) -- (bl/2k ~) (2ku + 1 ). (17) 
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Denoting the right side of (17), 
for the function u = u(x) 

for brevity, by r and performing certain calculations, 

S du/q~ (u) = x -t- C4. 

we obtain a relation 

(18) 

Formula (18) is the general integral of (16). After integration, constants C~ and C 4 are determined using the last 
two boundary conditions. The solution of (3) in ease IV for t = t(x) is given as before by (14). Thus, in case IV the solu- 
tion of the nonlinear problem (2)-(4) is determined by (18) and (14). If we take another type of source, namely, put 

h (u) = -- b, exp  ( - -  ku), then instead of (16) we obtain the simpler equation 

d~u 

dx ~ 
k \ dx ] q - b 1 = 0 ,  

whose general integral has the form 

e x p  [2ka I (x -F G)I = (M - aO/(M - -  al) , 

where 

where 

where 

11 January 1965 

(19) 

(2o) 

M 2 (u) = C3 exp  (2ku) + a~, a~ = b~/k > O. 

Using the last two boundary condkions to evaluate C 3 and C 4, we obtain equations which are solved graphically: 

e x p  [2kalCd = (M1 - -  aO/(M~ + a J ,  (21) 

exp [2kal (R  + C4)] = (M2 - -  al)/(M~ + al), (22) 

Let us take a special case. 

M~ = M (u~), M~ = M (u~). 

When k = 1 / 2  = b 1, we have a~ = 1. T h e n  ( 2 0 ) - ( 2 2 )  assume the simpler form 

exp  (x + C4) = (N -- 1) / (N-p  1), 

exp ( G ) =  (N1--  1)/(N1 + 1), 

exp (R + C4) = 0 u  1)/(N= + 1), 

N 2 (u) = G exp (u) if- 1, N~ = N (u0, G = N (uj .  
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